

Finalidade

Método UV otimizado para a determinação de aspartato aminotransferase (GOT/AST) em soro ou plasma.

Significado Clínico

Aumentos de GOT/AST podem ser observados em hepatite infecciosa e tóxica, cirrose, obstrução biliar e esteatose. Seu nível também está aumentado quando ocorre hemólise, deficiência de selênio/vitamina E, e no exercício físico intenso. Em casos de lesões musculares, é importante verificar a atividade de CK.

A GOT/AST também é útil na avaliação de condicionamento físico em animais de esportes. Lesões no músculo cardíaco também elevam a GOT/AST sérica. Cardiomiopatias diversas podem causar este efeito, assim como endocardites bacterianas, dirofilariose, trombose aórtica e infarto do miocárdio. Quando estiver presente congestão hepática por problema cardíaco, a enzima provavelmente está elevada devido ao fígado congesto.

O aumento da GOT/AST sérica pode ocorrer em patologias de localização no sistema nervoso central. Quando isto ocorre, sugere uma grande lesão do parênquima e um prognóstico ruim.

Em equinos, é possível notar aumento da atividade de GOT/AST, com atividade normal de CK, quando a origem de GOT/AST for o fígado, sugerindo que houve lesão de hepatócitos. No entanto, em tal caso, permanece a dúvida, porque a meia-vida de CK é menor do que a de GOT/AST. As atividades séricas de ambas as enzimas podem estar aumentadas quando há lesão muscular; ainda assim, a atividade de CK pode retornar ao normal antes da atividade de GOT/AST.

Fundamento do método

Baseado no seguinte esquema de reação:

oxalacetato + NADH + H⁺ MDH L-malato + NAD⁺

Reagentes Fornecidos

A.Reagente A: solução de tampão Tris pH 7,8 contendo L-aspartato. B.Reagente B: solução contendo 2-oxoglutarato, nicotinamida adenina dinucleotídeo reduzido (NADH), malato desidrogenase (MDH) e lactato desidrogenase (LDH).

Concentrações finais

Tris	100 mmol/L: pH 7.8
L-aspartato	200 mmol/L
NADH	
MDH	
LDH	≥ 600 U/L
2-oxoglutarato	12 mmol/L

Instruções de Uso

Reagentes Fornecidos: prontos para uso. Podem ser utilizados separadamente ou como reagente único, misturando 4 partes de Reagente A + 1 parte de Reagente B (ex. 4 mL Reagente A + 1 mL Reagente

Precauções

Os reagentes são para uso diagnóstico in vitro veterinário.

Utilizar os reagentes observando as precauções habituais de trabalho no laboratório de análises clínicas.

Todos os reagentes e amostras devem ser descartados conforme a legislação local vigente.

Estabilidade e instruções de armazenamento

Reagentes fornecidos: são estáveis sob refrigeração (2-8ºC) até a data de vencimento indicada na embalagem.

Uma vez abertos, não devem permanecer fora do refrigerador durante períodos prolongados. Evitar contaminações.

Reagente único (pré-misturado): estável sob refrigeração (2-8ºC) por 2 meses a contar da data de preparação.

Indícios de instabilidade ou deterioração dos reagentes

O Reagente B pode desenvolver uma coloração parda rosada que não afeta seu funcionamento.

Quando o espectrofotômetro for zerado com água destilada, leituras de absorbância do reagente único inferiores a 0,900 D.O. ou superiores a 1,800 D.O. (a 340 nm) são indícios de deterioração.

Amostra

Soro ou plasma.

- a) Coleta: deve ser realizada de forma habitual.
- Aditivos: caso seja utilizado o plasma como amostra, heparina ou EDTA devem ser utilizados como anticoagulantes.
- c) Estabilidade e instruções de armazenamento: a GOT/AST em soro é estável por até 3 dias sob refrigeração (2-8ºC), sem necessidade de adicionar conservantes. Não congelar.

Interferências

As amostras de pacientes hemodialisados ou com hipovitaminose ou outras patologias associadas com deficiência de piridoxal fosfato produzem valores falsamente menores.

Bilirrubina até 30 mg/dL e triglicerídeos até 500 mg/dL não produzem interferências significativas. A hemoglobina interfere significativamente aumentando os resultados, partindo de hemólise moderada, pela presença de GOT/AST nos eritrócitos.

Material necessário (não fornecido)

- Espectrofotômetro:
- Micropipetas e pipetas capazes de medir os volumes indicados;
- Banho-maria à temperatura indicada no procedimento e,
- Cronômetro.

Condições da reação

- Comprimento de onda: 340 nm

- Temperatura de reação: 37ºC

- Tempo de Reação: 4 minutos

- Volume de amostra: 100μL

Os volumes de Amostras e Reagente podem mudar proporcionalmente sem que variem os fatores de cálculo.

Procedimento

I - Técnica com reagente único

Em uma cubeta mantida a 37ºC, colocar:

Reagente único	1,0 mL
Pré-incubar uns minutos. Após, acrescentar:	
Amostra	100 μL

Misturar imediatamente e disparar simultaneamente o cronômetro. Após 90 segundos, registrar a absorbância inicial (vide "Limitações do procedimento") e passados os minutos 1, 2 e 3 da primeira leitura. Determinar a diferença média da absorbância/min (Δ A/min), subtraindo cada leitura da anterior e calculando a média dos valores. Utilizar esta média para os cálculos.

II- Técnica com reagentes separados

Em uma cuba mantida a 37ºC, colocar:

Reagente A	0,80 mL	
Amostra	100 μL	
Pré-incubar uns minutos. Após, acrescentar:		
Reagente B	0,20 mL	

Misturar imediatamente e disparar simultaneamente o cronômetro. Após 90 segundos, registrar a absorbância inicial (vide "Limitações do procedimento") e passados os minutos 1, 2 e 3 da primeira leitura. Determinar a diferença média da absorbância/min (ΔA /min), subtraindo cada leitura da anterior e tirando a média dos valores. Utilizar esta média para os cálculos.

Cálculo dos Resultados

GOT (U/L) = (Δ A/min x fator)

Fator = 1746

Exemplo:

(Os dados apresentados a seguir são ilustrativos)

	Amostra	Diferença	Média
Absorbância A1	1,456		
Absorbância A2	1,401	0,055	
Absorbância A3	1,344	0,057	
Absorbância A4	1,288	0,056	0,056

Utilizando Fator teórico:

GOT $(U/L) = 0.056 \times 1746 = 97.8 U/L$

Caso seja utilizado o calibrador Laborcal *Vet*: Concentração do GOT no calibrador: 104 U/L

	Calibrador	Diferença	Média
Absorbância A1	1,512		
Absorbância A2	1,451	0,061	
Absorbância A3	1,390	0,061	
Absorbância A4	1,329	0,059	0,060

Obtenção do fator de calibração:

Fator =
$$\frac{[GOT_{calibrador}]}{\Delta A/min_{calibrador}} = \frac{104 \text{ U/L}}{0,060} = 1733$$

GOT (U/L) = $\Delta A/min_{Amostra} x Fator = 0,056 x 1733 = 97 U/L$

Valores de Referência Espécie (U/L)

Canina	23 - 66
Felina	26 – 43
Bovino	78-132
Equina	226-366

Os valores de referência devem ser usados apenas como orientação. Recomenda-se que cada laboratório estabeleça, na população de animais atendida, seus próprios valores de referência.

Método de Controle de Qualidade

Processar 2 níveis de um material de controle de qualidade (Laborcontrol $\textit{Vet}\, 1$ e 2) com atividades conhecidas de aspartato aminotransferase, com cada determinação.

Limitações do procedimento

Vide "Interferências".

Absorbância inicial baixa: uma vez acrescentada a amostra, se a primeira leitura (tempo 0) for inferior a 0,900 D.O., encontrando-se o Reativo B em boas condições, indica uma amostra com muita atividade de GOT (que consome o NADH muito antes desta leitura) ou com uma concentração de cetoácidos endógenos particularmente elevada. Neste caso, repetir a determinação com amostra diluída com solução fisiológica, multiplicando o resultado conforme à diluição já realizada.

Desempenho

 a) Reprodutibilidade: processando 20 determinações simultaneamente de uma amostra canina e outra equina com valores dentro do intervalo de referência, obteve-se o seguinte: Amostra Canina:

Concentração	D.P.	C.V.
40,15	1,04	2,59
377,3	8,45	2,24
Amostra Equina:		
Concentração	D.P.	C.V.
176,95	7,5	4,24
409,55	7,17	1,75

- Sensibilidade: a mudança mínima de atividade detectável de GOT diferente de zero é 6 U/L.
- c) Faixa dinâmica: o intervalo útil de leitura prolonga-se até 0,345 ΔA/min (a 340 nm), aproximadamente 600 U/L. Caso a ΔA/min for superior a 0,345, a determinação deve ser repetida com amostra diluída (1:5 ou 1:10) com solução fisiológica, corrigindo os resultados conforme o fator de diluição empregado.

Parâmetros para analisadores automáticos

Para a programação consultar o manual de uso do analisador a ser utilizado.

Apresentação

2 x 48 mL Reagente A 2 x 12 mL Reagente B (Cód. 1774144)

Referências

- IFCC Clin. Chim. Acta 70/2:F19 (1976).
- SSCC Scand. J. Clin. Lab. Invest. 33:291 (1974).
- DGKC Z. Klin. Chem. 10:281 (1972).
- Bergmeyer H.V., Horder, M., Rej R. J. Clin. Chem. Clin. Biochem. 24:497, 1986.
- Dufour, D.R.; Lott, J.A.; Nolte, F.S.; Gretch, D.R.; Koff, R.S. and Seeff, L.B.
- Clin. Chem. 46/12:2027, 2000.
- "Tietz textbook of Clinical Chemistry" Burtis and Ashwood Editors, 3rd Ed. Saunders Co., 1999.
- Thrall, M. Hematologia e Bioquímica Clínica Veterinária 2 ed. Guanabara koogan: Rio de Janeiro, 2015.
- González, F. H. D.; SILVA, S. C. Introdução a bioquímica clínica veterinária. Porto Alegre: UFRGS, 2003.

Termo de garantia

Este Kit como um todo tem garantia de troca, desde que esteja dentro do prazo de validade e seja comprovado pelo Departamento Técnico da Laborlab Produtos para Laboratórios Ltda. que não houve falhas técnicas na execução e manuseio deste kit, assim como em sua conservação.

SÍMBOLOS

 ϵ

Este produto preenche os requisitos da Diretiva Européia 98/79 CE para dispositivos médicos de diagnóstico "in vitro"

EC REP

Representante autorizado na Comunidade Européia

IVD

Uso médico-diagnóstico "in vitro"

 $\sqrt{\Sigma}$

Conteúdo suficiente para <n> testes

R

Data de validade

Į.

Limite de temperatura (conservar a)

 \mathbb{X}

Não congelar

₩.

Risco biológico

Volume após da reconstituição

Cont.

Conteúdo

LOT

Número de lote

....

...

Elaborado por:

Xn

Nocivo

-

Corrosivo / Caústico

X

Irritante

Consultar as instruções de uso

Calibr.

Calibrador

CONTROL +

Controle

CONTROL +

Controle Positivo

CONTROL -

Controle Negativo

DEE

Número de catálogo

Laborlab Produtos para Laboratórios Ltda.
Estrada do Capão Bonito, 489
Guarulhos/SP – Brasil – CEP: 07263-010
CNPJ: 72.807.043/0001-94
Atendimento ao cliente:
+55(11) 2480-0529/+55(11) 2499-1277

sac@laborlab.com.br www.laborlab.com.br Revisão 00 Agosto/2020